Kriptovaliutos – tai skaitmeninė valiuta, kurioje kriptografija naudojama apsaugoti sandorius ir kontroliuoti naujų vienetų kūrimą. Matematikos vaidmuo čia yra labai svarbus, ypač kuriant ir palaikant blokų grandinę.
Bitcoin yra technologinis šedevras“
Bill Gates
Blokų grandinė yra decentralizuotas registras, kuriame fiksuojami visi sandoriai, atliekami naudojant konkrečią kriptovaliutą. Šiame straipsnyje apžvelgsime „Bitcoin“ formulę ir kitas svarbias sąvokas, padedančias suprasti matematikos vaidmenį kriptovaliutų veikime. Domėdamiesi, kaip veikia kriptovaliutos, kartu giliname ir matematikos žinias – kai matematika siejama su kasdienybe, ją tampa lengviau suprasti.
Kaip veikia kriptovaliutos
Vienas pagrindinių kriptovaliutų bruožų yra decentralizacija. Skirtingai nei tradicinės valiutos ar finansų sistemos, kurias kontroliuoja centrinės institucijos, kriptovaliutomis sandoriai atliekami tiesiogiai, be tarpininkų.
Decentralizacija įgyvendinama naudojantis kompiuterių tinklu, sudarytu iš vadinamųjų tinklo mazgų. Šie mazgai apdoroja sandorius ir įrašo juos į blokų grandinę.
Blokų grandinėje visi sandoriai yra vieši, tačiau vartotojai identifikuojami ne vardais, o kriptografiniais raktais.
Blokų grandinė – tai decentralizuotas viešas registras, kuriame įrašomi visi sandoriai, atliekami naudojant konkrečią kriptovaliutą. Ją palaiko tinklo mazgų sistema, o kiekvienas mazgas turi identišką blokų grandinės kopiją. Kadangi blokų grandinės nekontroliuoja jokia viena institucija ar asmuo, ji laikoma saugia ir patikima.
Matematika kriptovaliutų veikime atlieka esminį vaidmenį. Prieš įrašant sandorį į blokų grandinę, jis turi būti patvirtintas išsprendžiant sudėtingus matematinius uždavinius. Šie uždaviniai sukurti taip, kad jų sprendimas reikalautų laiko ir skaičiavimo galios. Tai leidžia riboti sandorių patvirtinimo tempą ir kartu kontroliuoti kriptovaliutos pasiūlą, padedant išvengti infliacijos – reiškinio, kurį svarbu suprasti ne tik šiame kontekste, bet ir planuojant asmeninius finansus.
Sandorių patvirtinimo procesas vadinamas kriptovaliutų kasimu. Jį atlieka specializuota kompiuterinė įranga, sprendžianti sudėtingus matematinius algoritmus. Pirmasis kasėjas, išsprendęs uždavinį, gauna atlygį – iš anksto nustatytą kriptovaliutos, pavyzdžiui, bitkoinų, kiekį. Šis atlygis skatina kasėjus varžytis tarpusavyje ir taip padeda palaikyti blokų grandinę saugią ir patikimą.
Didėjant blokų grandinėje atliekamų sandorių skaičiui, matematiniai uždaviniai tampa vis sudėtingesni. Tai reiškia, kad kasimui reikia vis daugiau skaičiavimo galios, todėl pats procesas tampa vis labiau sudėtingas. Dėl šios priežasties kasimas ilgainiui tapo labai specializuotas ir reikalaujantis daug resursų bei nemažų investicijų į įrangą ir energiją.
Matematikos vaidmuo kriptovaliutose turi reikšmės ir valstybėms bei finansų institucijoms.
Kadangi kriptovaliutos yra decentralizuotos ir veikia nepriklausomai nuo centrinės valdžios, jos dažnai nėra reguliuojamos. Dėl to valdžios institucijoms ir finansų sektoriui tampa sudėtinga kontroliuoti kriptovaliutų naudojimą ir užtikrinti, kad jos būtų naudojamos teisėtiems tikslams.

Kriptovaliutoms toliau populiarėjant ir tampant vis labiau įprasta finansų sistemos dalimi, valstybės ir finansų institucijos turi pritaikyti savo reguliavimo sistemas, kad galėtų jas įtraukti.
Matematikos taikymas kriptovaliutose yra būtinas siekiant užtikrinti blokų grandinės saugumą, patikimumą ir decentralizaciją. Pasitelkiant sudėtingus matematinius uždavinius ir kasimo procesą, blokų grandinė gali riboti kriptovaliutos pasiūlą ir kartu užtikrinti saugią bei patikimą sandorių apdorojimo sistemą.
Bitcoin formulė
Bitcoin yra pirmoji ir geriausiai žinoma kriptovaliuta, kurios sukūrimas rėmėsi sudėtingomis matematinėmis formulėmis. Naudodamasis slapyvardžiu „Satoshi Nakamoto“, Bitcoin protokolą sukūrė vienas asmuo arba žmonių grupė. Decentralizuotai skaitmeninei valiutai sukurti Bitcoin formulė pasitelkia kriptografiją ir matematinius algoritmus.
Bitcoin formulė remiasi metodu, vadinamu "Proof of Work" algoritmu. Kad sistema galėtų veikti, tinklo dalyviai, vadinami kasėjais, sprendžia sudėtingus matematinius uždavinius, taip patvirtindami sandorius ir pridėdami naujus blokus prie blokų grandinės. Kiekviename bloke saugomas patvirtintų sandorių sąrašas o pridėjus bloką prie grandinės, jis nebegali būti keičiamas.
Pirmasis komercinis sandoris bitkoinais buvo dvi picos, kurias 2010 metais nusipirko programuotojas Laszlo Hanyecz. Už jas jis sumokėjo 10 000 bitkoinų, kurie tuo metu buvo verti apie 41 JAV dolerį. Šiandien tokia suma būtų verta šimtų milijonų eurų.
Matematiniai uždaviniai, kuriuos sprendžia kasėjai, reikalauja didelės skaičiavimo galios, todėl bitkoinų kasimui būtina specializuota techninė įranga. Bendras bitkoinų kiekis yra ribotas – cirkuliuoti gali 21 milijonas. Šiuo metu jau iškasta beveik 20 milijonų bitkoinų, o likęs daugiau nei vienas milijonas bus kasamas palaipsniui iki maždaug 2140 metų.
Kitos kriptovaliutos
Nors Bitcoin yra geriausiai žinoma kriptovaliuta, jų egzistuoja gerokai daugiau, ir kiekviena naudoja skirtingą matematikos pritaikymo būdą sandoriams patvirtinti. Pavyzdžiui, Ethereum taiko kitokį algoritmą, vadinamą „Proof of Stake“, kuris leidžia Ethereum turėtojams patvirtinti sandorius blokų grandinėje nereikalaujant didelės skaičiavimo galios.
Kriptovaliutose taip pat naudojami viešieji ir privatūs raktai, skirti sandoriams blokų grandinėje apsaugoti ir patvirtinti. Viešasis raktas iš esmės veikia kaip vartotojo sąskaitos numeris blokų grandinėje, o privatus raktas – tai tarsi slaptažodis, naudojamas sandoriams pasirašyti ir nuosavybės teisei įrodyti.

Blokų grandinės sandorių saugumui užtikrinti taip pat naudojamos kriptografinės maišos funkcijos. Šios matematinės funcijos leidžia bet kokius duomenis paversti fiksuoto ilgio kodu, kuris yra unikalus tai įvesčiai. Bitcoin sistemoje naudojama maišos funkcija sukuria 256 bitų ilgio išvestį ir yra vadinama SHA-256. Kiekviename bloke saugoma ankstesnio bloko maišos reikšmė, todėl bet koks bandymas pakeisti duomenis būtų lengvai pastebimas.
Kriptovaliutų trūkumai
Kaip ir bet kuri technologija, kriptovaliutos turi ir trūkumų. Vienas dažniausiai minimų – didelis energijos suvartojimas kasant kriptovaliutas. Vien bitkoinų kasimas sunaudoja daugiau energijos nei kelios šalys.
elektros energijos per dieną!
Taip pat dėl spartaus naujų kriptovaliutų augimo atsirado ir sukčiavimo atvejų. Kai kurios kriptovaliutos buvo kuriamos vieninteliu tikslu – apgauti investuotojus. Matematikos pagrindų, kuriais remiasi kriptovaliutos, supratimas gali padėti investuotojams atskirti patikimus projektus nuo abejotinų.
Matematika ir blokų grandinės saugumas
Kriptovaliutų ir blokų grandinės saugumas labai stipriai remiasi matematika, naudojama kurti ir patvirtinti kriptografines maišos funkcijas. Maišos funkcija priima tam tikrą įvestį ir sugeneruoja unikalų, fiksuoto ilgio rezultatą, vadinamą maiša. Kriptovaliutų atveju ši įvestis yra sandorių duomenų blokas, o gauta maiša įtraukiama į kitą bloką, taip sukuriant užšifruotą duomenų grandinę, arba kitaip blokų grandine.
Kriptografinės maišos funkcijos sukurtos taip, kad būtų negrįžtamos. Tai reiškia, jog sugeneruotos maišos neįmanoma pakeisti ar atkurti pradinės informacijos nepastebimai. Dėl šios priežasties pakeisti jau įrašytus blokų grandinės duomenis atgaline tvarka yra itin sudėtinga.

Viešiems ir privatiems vartotojų raktams apsaugoti taip pat naudojami matematinio šifravimo metodai. Viešieji raktai naudojami sandoriams gauti, o privatūs raktai – sandoriams patvirtinti. Šie raktai generuojami naudojant matematinius algoritmus, kuriuos itin sunku iššifruoti, todėl viešojo rakto atkūrimas iš privataus rakto yra praktiškai neįmanomas.
Matematinis šifravimas užtikrina blokų grandinės saugumą ir vartotojų privatumą, todėl sandorius galima atlikti neieškant patikimo tarpiniko. Kita vertus, būtent dėl kriptografinės sistemos pobūdžio atkurti ar pakeisti prarastus ar pavogtus raktus yra labai sudėtinga, todėl vartotojams labai svarbu tinkamai pasirūpinti savo raktų saugumu.
Matematikos vaidmuo blokų grandinės saugume yra itin svarbus. Sudėtingi matematiniai algoritmai ir šifravimo metodai užtikrina blokų grandinės saugumą, patikimumą ir anonimiškumą. Dėl šių technikų pakeisti ankstesnius duomenis ar pasisavinti privačius raktus piktavaliams yra labai sunku, o pati sistema išlieka saugi ir patikima tiek sandoriams, tiek duomenų saugojimui. Sudėtingi matematiniai modeliai naudojami ne tik skaitmeninėse sistemose, bet ir, pavyzdžiui, modeliuojant įspūdingus šiuolaikinius pastatus.
Matematikos naudojimas kriptovaliutose
Matematika atlieka esminį vaidmenį kriptovaliutų ir blokų grandinės technologijoje, užtikrindama tinklo saugumą ir patikimą veikimą.
- Matematika yra kriptovaliutų ir blokų grandinės technologijos pagrindas, užtikrinantis tinklo saugumą ir patikimą veikimą.
- Bitcoin sistemoje naudojami sudėtingi matematiniai algoritmai, o kitos kriptovaliutos taiko skirtingus metodus sandoriams patvirtinti.
- Kriptografinės maišos funkcijos, viešieji ir privatūs raktai bei darbo įrodymo algoritmas padeda suprasti, kaip veikia kriptovaliutų sistemos.
Nors matematika yra labai svarbi kriptovaliutų kūrimui ir veikimui, jos reikšmė neapsiriboja vien finansais. Kriptovaliutų ir blokų grandinės technologijų pritaikymo galimybės yra labai plačios, o technologijai toliau vystantis, ji paveiks vis daugiau skirtingų sričių. Suprasti matematinius kriptovaliutų pagrindus yra svarbu kiekvienam, kuris svarsto investuoti ar nori aktyviai dalyvauti šioje sparčiai besivystančioje technologijų srityje.
Apibendrinti naudojant DI:









